


Fig. 1. Illustration of how humans have been considered in each group. Left: Type 1 - generalizable and interchangeable human participants. Middle: Type 
2 - humans behave differently depending on their environment (e.g., an assembly line worker working in his workplace). Right: Type 3 - humans belong 
to complex societies where they develop relationships with other social actors (e.g., a worker considered to be targets of automation due to power issues 
pertaining to organizational hierarchy).

data collection and analysis instead of presenting preliminary 
studies and ideas. After the initial search, the papers were 
distributed to the first three authors who conducted the initial 
categorization based on the coding scheme presented below. 
The three authors examined abstracts, methods, and results 
sections. If needed, a whole paper was inspected. After the 
initial categorization, each paper was cross-checked at least 
twice. In developing our coding scheme, we particularly 
focused on two factors to identify how much agency humans 
had in the studies: 1) contextualization and 2) collaboration.

A. Contextualization 
Contextualization has been an important component when

analyzing agency of human subjects in anthropology [19],
sociology [8], and HCI [4], [5]. As we defined earlier, agency
is a “socioculturally mediated” capacity to act. In this def- 
inition, “socioculturally mediated” implies that the capacity 
of human subjects is shaped through their interaction with 
their surroundings (e.g., other stakeholders in the contexts, 
physical environments, and culture). Through this interaction, 
humans are considered as agents who can generate and convey 
meanings through their actions. Thus, analyzing how contex- 
tualization was incorporated in studies provides clues about 
human agency in previous studies. 

From this perspective, it is crucial to understand humans’ 
actions in relation to the social, political, and cultural contexts
they are in [20]. In this paper, we analyze the HRI studies with
respect to three potential approaches (hereby called “features”) 
that reveal the extent to which context is taken into account 
and which are relevant to HRI studies:

• (a) replicating a physical study environment to reflect
places that participants are familiar with [21], [22]

• (b) deploying studies in settings and contexts that partic-
ipants are familiar with [23], [24]

• (c) incorporating multiple stakeholders with different 
roles to show how they dynamically generate meanings
through their interactions [25], [26] 

These three features were developed based on studies exam- 
ining contextualization in anthropology, sociology, and HCI. 
To examine the three features, we first checked abstracts and 
introductions to find any information about target contexts 
of robotic systems. Then, for the feature (a), we examined

methods for information about the physical study environment, 
as well as the figures illustrating study settings (if any). 
For the feature (b), we reviewed recruitment information 
and participants information to seek the match between the 
target environment (e.g., kindergarten) and participants’ de- 
mographic information (e.g., age of participants). The feature
(c) was examined by analyzing whether information about 
participants indicated that stakeholder diversity was taken into 
account. We also checked results sections to determine how 
stakeholders’ social dynamics were described.

B. Collaboration 
Collaboration between researchers and human participants 

has been discussed as an important factor when examining
human participants’ agency in anthropology [27], gender stud-
ies [28], and HCI [29]–[31]. Collaboration enables human 
participants to have more weight in the decision making pro- 
cess of the research (e.g., adjusting research directions, iden- 
tifying main themes). Reconsidering collaboration between 
researchers and human participants has led to methodological
and epistemological shifts [27]. The core contribution of 
collaboration is that researchers acknowledge the importance 
of contextual knowledge of non-researchers and become more 
engaged with non-researchers’ situations. Considering the lim- 
ited diversity of researchers in terms of their social, cultural, 
and economical backgrounds, this collaboration enables re- 
searchers to get more involved in social problems that have 
been less explored. We examine the level of collaboration by 
searching for one feature:

• (d) an opportunity for participants to discuss and shape
research directions or processes [27], [30].

To examine the feature, we reviewed methods and re- 
sults sections to determine if participants had a voice within 
the decision-making processes of studying robots (e.g., co- 
determine the characteristics of robots) and if participants’ 
unique situations were considered in study design.

C. Final Coding Scheme 
Based on our examination of papers in search of the four 

features listed above, the papers are categorized into three 
types: Type 1 studies, which do not have any of the four 
features; Type 2 studies, which have either the feature (a) or
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Fig. 2. The ratio of three types and subtypes throughout 16 years.

feature (b) of contextualization; and Type 3 studies, which 
have the feature (c) of contextualization or the feature (d) of 
collaboration.

D. Data Coding Procedure 
Each paper was assigned to one of the three types (see

Figure 1). Only papers reporting on empirical studies were
considered; non-empirical papers (e.g., studies without human 
subjects or survey papers; total N=58) were coded as Not 
Applicable (N/A). After identifying types, the first three au- 
thors cross-checked all papers (N=571). When a paper contains 
more than one of the four features, categorization was made 
according to the highest type: Type 3 (either c or d) > 
Type 2 (either a or b) > Type 1 (neither a, b, c, nor d).
For example, [32] was categorized as Type 2 because the
robot was deployed in a mall (Type 2 - b), even though 
the participants tested the proposed system in a lab (Type
1 - neither a, b, c, nor d). In our categorization process, 
we focused on which features HRI researchers incorporated, 
rather than on those that they did not. After the categorization 
process was done, all four authors tested intercoder reliability 
by randomly picking 10 papers. We had 85% agreement, and 
the disagreements were further discussed and resolved. After 
categorizing papers into the three types, we read the papers 
in each category to discover the emerging patterns in terms of
contextualization and collaboration (See this link to a complete
list of categorization).

III.  R ESULTS

A. Type 1: Humans as Representatives of Human Nature
Type 1 studies represent humans as generalizable human. 

As these studies investigate human nature, all humans are 
considered interchangeable. In total, we classified 339 papers 
– 59% of those published within 16 years – as being of the 
first type (See Figure 3). This type of paper was at its highest 
prevalence in 2018 (69% of total) and lowest in 2007 (36%)
(See Figure 2). The number of papers of this type has been
consistently high compared to other types. 

To achieve generalizability of their findings, these studies 
include randomly chosen humans as research subjects, based 
on the assumption that the results would be the same regardless 
of who the participants are. In many studies, participants’ iden- 
tities (e.g., age, gender, cultural background, socioeconomic

Fig. 3. Images showing how humans are understood as generalizable humans
with similar biological systems (Left: [91], Right: [92]). Image courtesy of
Takayuki Kanda (left) and Wesley Chan (right).

background) were hardly taken into account: 38% of Type 1 
studies (130/339) do not present basic information such as total
number of participants, participants’ age or gender [33]–[49].

45% participants were women, and participants are on 
average 27 years old. There is an age gap (8 years difference) 
between online studies (mean age = 33) and lab studies 
(mean age = 25). Each study has 91 participants on average; 
online studies (avg 329) have about 291 more participants 
than lab studies (avg 38). These studies tend to contain 
more information about robots (e.g., robot’s functionality, size, 
embedded program, Degree of Freedom) than about individual 
human subjects (e.g., specific rationales for having recruited 
them). Since 2010, an increasing number of papers have used 
crowdsourcing websites such as Amazon Mechanical Turk 
(mTurk) to recruit participants in large numbers for their
experiments [49]–[57].

Many of these studies have hypotheses that they aim to val- 
idate, and quantitatively evaluate the participants’ interaction 
with their robots. Often, participants were asked to provide 
their reaction through standardized measurement (212/339
- 63% of Type 1) using Likert scales (e.g., [58]–[65]) or 
standardized measures (e.g., NASA Task Load Index (TLX)
[36], [40], [66]–[70], Godspeed [71]–[76], Robotic Social At-
trributes Scale (RoSAS) [77], [78], Negative Attitude towards
Robots Scale (NARS) [73], [79], [80], System Usability Scale
(SUS) [81], Robotic Social Attribute Scale (RoSoAS) [79],
Multidimensional Measure of Trust (MDMT) [82], [83]).

About 22% of Type 1 papers utilized open-ended questions
(73 out of 339). The researchers in these studies asked
open-ended questions after completing experiments [84]–[86],
so that participants could provide their feedback [87], [88].
Although a few studies thoroughly analyze this qualitative data
(e.g., [89], [90]), the majority of these studies tend to utilize
quotes as a supplement to their statistical analysis.

B. Type 2: Humans as Users
Type 2 studies take into account that humans may interact 

with robots differently depending on their ages, occupations, 
and surroundings. In other words, these studies tend to incor- 
porate at least one real-world aspect (e.g., intended users or
actual environments). As depicted in Figure 1, these studies
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Fig. 4. One example of a living lab created to replicate a real-world
environment by containing everyday objects such as furniture [93]. Similar
to a lab, a living-lab environment is controlled by researchers (e.g., hanging
cameras that record human subjects). Image courtesy of James Crowley.

view humans as the ones situated within certain spaces (e.g.,
humans at the workplace). The papers of this type continuously
increased except for a drop in 2018 and 2021 (See Figure 2).

After reviewing Type 2 papers, we found three emerging 
subcategories. Type 2.1 comprises studies that satisfy the 
first feature of contextualization — (a) replicating a physi- 
cal study environment to reflect places that participants are 
familiar with. Type 2.2 studies contain the second feature 
of contextualization — (b) deploying studies in settings and 
contexts that participants are familiar with. Type 2.3 comprises 
studies that have both the first and second features (a), (b) 
but that do not satisfy the third feature (c). These studies 
focus only on the targeted user group, rather than including 
the related stakeholders surrounding that group. Further, no 
social dynamics among multiple stakeholders were described.

1) Type 2.1: Humans in Lab 2.0- Combining Lab and 

Real Settings: Lab 2.0 is a lab setting modified to be 
more like an actual environment. Although these studies were 
still conducted in controlled settings, they incorporate a few 
environmental aspects. 12% of the papers (72 out of 571) 
belong to this category. We found two ways of utilizing Lab
2.0 in HRI papers. One way is converting a lab into a replica 
environment, so as to avoid logistical difficulties in using an
actual environment (see Figure 4). These are often called
Living labs (e.g., the AwareHome at Goergia tech [22]). For
example, when Drury et al. [94] evaluated their polymorphic
robots designed for natural disasters or terrorist attacks, actual 
disasters or attacks were not readily available; therefore, they
used a replica of such a setting in their lab environment [94].
Similarly, studies were conducted in living laboratories, which
mimicked real settings such as homes [95]–[100], emergency
situations [101]–[105], bomb detection [106], hospital [107],
[108], classroom [109], grocery store [110], and museum 
[111]. Recently, VR environments have emerged as a new way
of simulating environment [112], [113]. 

The other way of conducting Lab 2.0 studies involves 
temporary controlled spaces within the actual settings – homes
[100], [114], [115], eldercare institutions [116], [116], schools
[117], [118], [118]–[134], and a music practice room [135]).
We called these “a lab away from a lab”, as the researchers

developed controlled spaces outside of their own labs. While 
the first type of Lab 2.0 studies was carried out ever since the 
HRI conference initiated, this second approach appeared first 
in 2008 and was used more extensively after 2012 for child- 
robot interaction studies, which were conducted in school 
settings. These studies were performed in a separate classroom
that functioned as a lab (e.g. computer lab [117]) or after
school (e.g., [118]), where students followed the directions of
the researchers.

2) Type 2.2: Humans as Representatives of Potential User 

Groups: Our analysis showed that 18% of the papers (103 out 
of 571) have invited potential users of their robotic systems to 
their research process. Potential users are human subjects with 
specific characteristics (e.g., age, gender, social roles) who are 
recruited after considering the real-world use case scenario of 
robotic systems.

46% of the actual users were children [96], [109], [123],
[136]–[141]. 13% of these humans were domain experts
including healthcare professionals [142], [143], soldiers [144],
programmers [32], professional guards [86], and service work-
ers [145]. Older adults (10%) [99], [146] and people with
disabilities (7%) [147] were also part of the published studies.
About 8% of the invited humans are people with specific
cultural backgrounds in cross-cultural studies [148], [149].

Only two studies involved actual users of robots—one with
owners of vacuum cleaner robots [150] and one with assis-
tive arms [143]. Considering the limited numbers of robots 
successfully commercialized, this might not be a surprise. 
However, more studies with actual users who naturally brought 
robots into their lives could show how humans interact with 
robots in the real-world. By inviting potential users of their 
robotic systems, researchers employing a Type 2.2 approach 
have a chance to understand and consider their potential
users’ needs and contexts. For example, Stanton et al. [151] 
worked closely with the parents of children with Autism 
Spectrum Disorder (ASD), as well as with therapists, in 
their study investigating how those children are supported 
by Aibo; in creating their study environment, researchers 
waited until the parents confirmed that the environment was 
comfortable enough for the children. Incorporation of potential 
users broadens researchers’ view on society and helps them 
consider situations closer to real-world settings (e.g., not just 
individual children but children with their parents). Similar to 
our findings, Briggs et al. also addressed the significance of 
incorporating real users in a research process, as compared to
employing humans recruited randomly through mTurk [152].

3) Type 2.3: Humans in Public Spaces — Field Trials:
Another subcategory of Type 2 is field trial studies in public
spaces (see Figure 5), which make up around 8% in the
HRI literature corpus (45 out of 571). These uncontrolled 
public spaces include shopping malls (36% of the total Type
2.3 studies) [153], [154], museums (10%) [155], open-house
exhibitions (10%) [156], [157], universities (8%), public roads
(8%), train stations (6%), classrooms (6%) and other public
places (e.g., a supermarket [158]). Compared to studies em- 
ploying Type 2.1, almost all Type 2.3 studies allow participants
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Fig. 5. Example from a field trial showing humans and Robovie within a
public space [165]. Image courtesy of Takayuki Kanda.

to freely interact with their robotic systems. 80% of the 
field trials employed humanoid robots and more than half of
the studies used Robovie (e.g. [159]). These studies lasted
from about an hour [160] to 17 weeks [161]. In these 
studies, the robots collected real-world data (e.g., sensor data) 
which can be used to enhance their training sets for when 
they are adopted in actual settings. For example, Shiomi et
al. [162] explored a group attention control (GAC) system
that helps robots to properly gaze at a group of people. 
Also, as robots were deployed in public spaces, these studies 
generated realistic robot use scenarios with the general public.
For example, Hayashi et al. [163] found that most people
passing by a train station do not pay much attention to a robot. 

Investigating humans in public settings enables HRI re- 
searchers to acquire real-world information which is not 
available through lab-based studies. Humans in these stud- 
ies behave more naturally. Due to these natural behaviors, 
researchers unexpectedly find new research themes. For ex- 
ample, Moore et al. found vandalism as an issue relevant to
autonomous vehicles [164]. Because researchers develop robot 
behavior models based on real-world data, these systems could 
be more easily adopted in the real-world. Type 2.3 studies 
present limited information about the participants (e.g., ages, 
genders, the number of participants etc). Only 35% of Type
2.3 studies provided basic information about their participants 
such as total number of participants, age, and gender. About 
half of these studies incorporated human subjects’ opinion 
about robots by applying simple measurements (e.g., Likert 
scales) to briefly retrieve participants’ views on specific issues.

C. Type 3: Humans as Social Actors

Type 3 studies incorporated social and power dynamics 
among stakeholders as an important layer, in addition to in-
cluding actual users and environments. As Figure 1 illustrates,
humans in these studies are not just located in the real-world, 
but dynamically interact with other people. These humans 
are often affected by power dynamics (e.g., a non-managerial 
worker has different views on automation than a managerial
worker [166], [167]). The number of papers of this type 
was highest in 2006 (19%) and lowest in 2010 and 2013 
(0%); since 2014, papers of this type consistently make up 
about 10% of the whole. In our analysis, we identified three

themes: 1) humans as collaborators of researchers (satisfying 
feature (d)), 2) humans as distinctive social actors (satisfying 
feature (c) and feature (d)), and 3) humans within social/power 
dynamics (satisfying feature (c)).

1) Type 3.1: Humans as Collaborators of Researchers:
Humans in this group of studies are collaborators: participating
in the study as counselors (e.g., clinicians [168]), co-designers
(e.g., [169]–[171]), and supporters (e.g., teachers [172]). In
these roles, humans are partners who researchers negotiate 
research processes and directions with. Also, humans have 
a voice within the decision-making processes although the 
degree of their involvement varies between papers. Rather than 
starting with researchers’ hypotheses that predetermine what to 
focus on in the research, Type 3.1 studies allowed negotiations 
between researchers and human participants to discuss what
factors should be considered in studying robots [169], [171],
[173]–[175].

Type 3.1 papers cover 4% of the entire publications (24 out 
of 571). Half of these papers (12 out of 24 papers) invited 
vulnerable populations into their studies as collaborators (e.g.,
people with disability (or health issues) [168], [171], [176]–
[179], children [170], [180], older adults [171], [181], [182]), 
as participatory approaches are known for giving a voice to
the marginalized [27], [28], [30], [183]. Collaboration in Type
3.1 studies is more than just including a human subject in a 
research process: it enables researchers to prioritize the issues 
identified from the human subject’s own views. 

In accordance with the focus on the unique situations of the 
participating humans (e.g., individual health condition), vari- 
ous types of robot platforms were employed, from humanoid
robots (e.g., PR2 [176], [181], Robovie [184], Pepper [168])
to non-humanoid robots (e.g., Cellulo [178], Cozmo [174],
YOLO [133], TACO [180], Mechanical Ottoman [185]). One 
fourth of the studies (5/21) did not employ specific robotic 
platforms and collaboratively generate appropriate platforms
with more formative approaches [169], [179], [182], [186].

Through these patterns of collaboration processes, re- 
searchers actively address their participants’ interests and 
concerns in their research processes. For example, in Scholtz et
al.’s study [187] of explosive ordnance disposal (EOD) robots,
the authors worked with the potential operators (e.g., civilian 
law enforcement teams) in developing evaluation methodolo- 
gies for interactions with the robots. The researchers note that 
the development of the main features of their EOD systems 
were based on participants’ suggestions. In another study, 
older adults took the initiative to re-frame and re-conceptualize
assistive robots together with researchers [182].

To better understand issues of humans, researchers often 
spent extra time and efforts on relationship building with
participants before the actual studies [169], [172], [184]. For
example, researchers [172] first volunteered in their target 
environment—an early child education center—for over 3 
months before conducting their study. They reported that 
they were able to build relationships with children, parents, 
and teachers in the center. This relationship building process 
helped the researchers grasp the potential challenges of robots
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Fig. 6. One example of a study exploring humans within social dynamics
[206]. In these studies, humans dynamically develop their relationships. Image
courtesy of Bilge Mutlu.

in the classroom environments.
2) Type 3.2: Humans as Distinctive Social Actors:

Humans in Type 3.2 studies are distinctive social actors. 
Type 3.2 studies highlight how a robot could support unique 
conditions of individual participants. These papers only cover 
1% of the paper published in the HRI conference (7 out of 
571). The participants in these studies (6 out of 7 studies)
are mostly the vulnerable such as people with ASD [188],
[189], the blind [177]), people with mobility limitations [190], 
and children [191]. These studies were often conducted with 
a small number of participants (3-12), and the condition of 
each participant was considered within the design process. 
For example, in Jacq et al.’s study, three children had a
robot with different behaviors for each of them [191]. The
researchers consulted with a therapist, developed hypotheses 
for each child, and evaluated the primary issues of robot design 
for them. Another example is a study that designed robotic 
shopping carts for the blind. Kulyukin et al. applied a principle 
of “ergonomics-for-one” which occupational therapists adopt
to devise individualized solutions [177]. This principle does
not assume that there is one standard procedure to support
blind people [192], [193], which is similar to the principle of
patient-centered care [194], [195]. This line of studies prior-
itizes heterogeneity, and this approach has been considered a 
legitimate method in other fields (e.g., single-subject studies
in healthcare [196]–[201], autobiography in gender studies
[202]–[204] or HCI [205]).

3) Type 3.3: Humans within Social/Power Dynamics:
Humans in Type 3.3 studies are people in specific social roles 
(e.g., mothers, nurses, team members). They are taken to be 
situated within society where possibly a myriad of complex
relationships exist (see Figure 6). These humans are considered
as people who dynamically develop relationships and exist 
within power differentials (e.g., the limited voice of the entry-

level worker compared to that of the managerial-level worker). 
Type 3.3 covers 6% of the papers published at the HRI 
conference (36 out of 571). 

Type 3.3 studies investigate robots considering various types 
of social dynamics including family dynamics (10 out of 37
Type 3.3 papers) [174], [186], [207]–[212], social dynamics
in organizations/workplaces (7/37) [206], [213]–[217], gender
dynamics (7/37) [207], [218]–[222], and racism (1/37) [223]. 
For example, a group of Type 3.3 studies showed how robotic 
vacuum cleaners changed the cleaning routines and division of 
labor among family members, which has been developed based
on family dynamics in home settings [207]–[209]. Type 3.3
studies also consider complex power issues such as gender and 
race. For example, Reich-Stiebert and Eyssel investigated how 
the perceived gender of the robots influences their interaction
with humans [218]; in particular, they explored if and how
human gender biases are reflected in their interactions with 
robots in educational settings. Racial and gender biases are 
power issues derived from the notion that society is a mul- 
tilayered space where some people’s voices are more limited 
than others.

IV. D ISCUSSION

Based on our analysis, we found that humans have mostly 
played passive roles in HRI research, rather than active roles 
in which they collaborate with researchers and utilize their 
contextual knowledge. Given that all approaches have their 
own strengths, it is difficult to tell what the best approach for 
an HRI study might be. However, considering the importance 
of humans in, and the interdisciplinarity of, the HRI com- 
munity, the uneven distribution regarding human roles can be
problematic (see Table I).

In terms of contextualization, around 60% of the studies did 
not consider actual contexts in which robots will be used (Type 
1). 30% of studies considered people’s contexts to some extent 
(Type 2.1 + Type 2.2), yet human subjects were rarely allowed 
to interact with robots in the way they would in their everyday 
lives (90% of all studies). In terms of collaboration, we found 
that only 5% (Type 3.1 + Type 3.2) of the studies published 
at the HRI conferences allowed their participants to play an 
active role such as interacting with robots within the existing 
social dynamics and sharing their contextual knowledge with 
the researchers. In this section, we discuss what opportunities 
there are for the HRI community, given an increased consider- 
ation of contextualization and collaboration: opportunities for
1) (epistemological) diversity, 2) social justice (attitude toward 
participants), and 3) reflexivity (examining unexamined bias of 
researchers).

A. Opportunities for Diversity
An epistemology is “a theory of knowledge [224],” which 

discusses what can be justified to be knowledge. A dominant 
epistemology in science generally strives for generalizability
and reproducibility [83], [225], [226]. This may explain 
why a majority of HRI studies investigate human nature in 
response to robots’ appearance or behaviors by randomly
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TABLE I
S UMMARY OF ALL TYPES

Rank % Human role (Type) Contxt. Collab. Strengths
1. 59% Generalizable humans (Type 1) No No Exploring human nature
2. 18% Actual users (Type 2.2) Yes No Getting actual users’ feedback on robots
3. 12% Users in replicated labs (Type 2.1) Yes No Incorporating some aspects of actual settings
4. 8% Users in public space (Type 2.3) Yes No Understanding robots’ interaction with humans in public space
5. 6% Social actors in social/power dynamics (Type 3.3) Yes No Understanding humans’ complex issues within a society
6. 4% Collaborators of researchers (Type 3.1) Yes Yes Incorporating contextual knowledge of non-researchers
7. 1% Distinctive social actor (Type 3.2) Yes Yes Addressing unique and tangible issues of humans

selecting human subjects, without considering their back- 
grounds and without inviting them to collaborate with the 
researchers. When contextualization is incorporated, this is not 
necessarily helpful in terms of the creation of generalizable 
and reproducible knowledge. However, they are not the only 
epistemological goals that researchers can pursue. 

Science and Technology Studies (STS) scholars have dis- 
cussed how focusing on generalizability could make the issues 
of people with less voice—socially marginalized groups— 
invisible because generalizability does not pay attention to
interindividual differences [20], [26], [227], [228]. For exam- 
ple, although African-American older adults develop dementia
at almost twice the rate of other races [229], HRI studies
exploring dementia have rarely included this population [169],
[230], [231]. Another example showing the importance of
diversity is facial detection algorithms with lower accuracy
rate of detecting the faces of women or people of color [232].
Designers considered all humans to be interchangeable, and 
trained their algorithms on conveniently accessible samples of 
college students; eventually, this reinforces existing discrimi- 
nation towards socially marginalized groups. 

To challenge the invisibility of socially marginalized peo- 
ple’s issues, diversity emerged as alternative epistemological
goals [20], [233]. These new goals enable researchers to learn
about how humans experience society in their own ways, and 
pay attention to their unique difficulties. Contextualization 
and collaboration have been considered as promising ways 
to address these new goals. Through contextualization, HRI 
researchers could understand how certain groups encounter 
different issues, and understand them based on their social, 
economical, cultural, and political position in society. Collab- 
oration will also enable HRI researchers to take their human 
subjects’ situations into account. Being aware of epistemo- 
logical goals that HRI researchers can choose, other than 
generalizability and reproducibility, would help diversify the 
knowledge in the HRI community.

B. Opportunities for Social Justice
If the opportunities for diversity address the significance of 

diversifying epistemology by focusing on diversity, this section 
discusses how researchers perform their studies to directly 
empower people with less power. A traditional epistemology 
of science requires objectivity as an essential attitude of 
researchers. Through objectivity, researchers keep away from 
human subjects and society, and observe them from a distance

rather than engage with their situations. With this approach, re- 
searchers can generate generalizable knowledge. Accordingly, 
in Type 1 studies, HRI researchers keep their distance from 
participants while they perform the main tasks with robots.
In contrast to objectivity, an “action-oriented approach [28]” 
requires researchers’ engagement with society and research 
participants, which helps researchers act on social issues. 
Rather than keeping a distance, these studies examine power 
dynamics among various stakeholders in specific contexts, and 
advocate for the most marginalized people in that settings. This 
is considered as a more active research approach that goes 
beyond merely describing the complexity of society or the 
participants’ situations. This engaging approach also relates to
the practice of “caring” [234], [235] and activism [16], [28].

In these alternative approaches, researchers’ engagement 
with society and participants is considered as an ethical
responsibility of researchers [236]. As the goal of research
is helping participants tackle their issues, strong collaboration 
between researchers and participants is necessary. For exam- 
ple, when Euebank conducted her studies with low-income 
women, the first step was to understand the participants’ issues
before setting the goal of her study [28]. She originally wanted
to teach low-income women computing skills as a way to help 
them get a job; however, through close collaboration, she dis- 
covered that they require more assistance in making informed 
decisions about a welfare system within a neoliberal society. 
Understanding the complex issues of participants is similar 
to contextualization (especially with the third feature (c) of 
contextualization in our paper); however, the action-oriented 
direction distinguishes this type of engagement studies from 
studies with contextualization features only. 

Objectivity can help HRI researchers generate generaliz- 
able knowledge; however, we would like to encourage HRI 
researchers to also explore social justice. Considering the influ- 
ence of robots in society, HRI researchers’ active engagement 
with society and especially with socially marginalized groups, 
could provide them with opportunities to act on society and 
address social justice issues.

C. Opportunities for Reflexivity
While analyzing the studies published at the HRI confer- 

ence, we found that socioeconomically underserved popula- 
tions are one of the groups whose voices and knowledge are 
largely overlooked in our field. This might be due to the fact 
that we, HRI researchers, are mostly educated, middle-class,
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and from developed countries ourselves. Those socioeconomi- 
cally marginalized populations may also be far away from the 
researchers’ own social networks. For example, although HRI 
researchers have investigated robots in manufacturing settings
[217], [237], the issues of the production workers—so-called 
low/mid-skilled workers with non-managerial positions—were 
not actively discussed. In particular, as entry-level workers, 
a number of them have limited voices at their workplaces, 
and yet economists are assuming that entry-level workers will 
be the most vulnerable concerning human replacement due to
innovative technologies like robots [238]–[241].

Regardless of the potential influence on these populations, 
their concerns about, and experiences with, robots have not 
been very visible in the HRI conference. If asked to participate 
in a Type 1 study, they would interact with robots in the lab the 
same way undergraduates (or other participants) do; however, 
they may not have the chance to interact with robots in their 
workplaces, and their perspectives on robots are not likely 
to become visible. At the same time, managers can easily 
consider that type of work to be mindless, which can bias their 
views towards the humans who perform it. The problem is that, 
unless researchers deliberately choose methodologies that lead 
to more caution about power dynamics between management 
and workers, they can accidentally adopt the viewpoint of 
managerial workers (who are generally researchers’ points of 
contact). 

This need for caution closely relates to the social construc- 
tionist’s notion of “reflexivity.” Since researchers are humans, 
we (researchers) all have our own sociocultural backgrounds 
that could make certain types of populations invisible to us. 
Suchman addressed the substance of reflexivity within the 
research of emerging technologies, particularly in workplaces
[26], [166]. For example, when she worked with a law 
firm to design new technology, she found that the manager- 
level personnel often view entry-level workers as performing 
mindless tasks that can easily be automated. The managers 
planned to replace these workers with the new technology that 
Suchman would design. However, after she closely observed 
the workers, she found that their tasks required tacit knowledge 
that cannot be automated. Reflexivity allowed her to realize 
that the managers’ viewpoint was biased and to adopt different 
views towards the workers. Her study describes the role of 
researchers designing emerging technologies as an intervention 
to avoid human replacement issues. 

Like Suchman, we as HRI researchers could intervene in 
these replacement issues and alleviate them by acknowledging 
our backgrounds and any potential biases they might cause. 
More engagement with socially marginalized populations, 
such as entry-level workers in manufacturing, would allow 
HRI researchers to be more aware of the societal changes their 
work can cause; that awareness, in turn, provides opportunities 
to steer those changes in more socially beneficial directions. 
Reflexivity will help researchers achieve genuine collaboration 
with socially marginalized groups as researchers become sen- 
sitive to their unexamined biases. Furthermore, the robots we 
develop can benefit these marginalized populations.

D. The Tension between Research Goals and Participant Roles

While humans are a crucial component of HRI research, 
so are robots. Correspondingly, a valid goal of HRI research 
may be to validate a novel algorithm. For that goal, a Type 1 
study with undergraduate students could be fully appropriate, 
considering the unique strengths of the Type 1 approach. 
Still, even this type of study might cause social and ethical 
issues. For example, when facial detection algorithms—which 
had been validated in tests with largely white undergraduate 
populations—were applied to nonwhite populations who were 
already socially marginalized, there were unintended conse-
quences [242]. After conducting a Type 1 study, computa- 
tional systems might then be evaluated again with different 
approaches to alleviate unexpected issues. 

Another possible mismatch between goals and participants’ 
concerns is that HRI researchers focus on the design of robots, 
whereas participants may be more interested in different 
types of intervention. STS researchers, conversely, can explore 
their participants’ issues through lenses of social intervention, 
including policies and educational programs. In HCI, which 
has traditionally been more technology-centric, recent studies 
have explored more diverse types of solutions (e.g., policies
[243], [244], or technology as part of infrastructure [245], 
[246], as opposed to technologies in and of themselves). 
This change was possible because of the HCI community’s 
increasing awareness that technologies which work well in the 
lab do not necessarily work well in the real world (for example, 
smart home studies, where lab stories and in-the-wild studies
use very different methodologies [23], [247]–[255]), as well as
because of researchers’ efforts to prioritize human voices and 
issues. Although HRI researchers may still focus on robots, 
more collaborative and contextualized approaches may help 
our community envision new types of robots and investigate 
other types of interventions along with them.

V. C ONCLUSION : Towards More Socially-Engaged HRI

Since the influence of robots on society can be greater 
than that of any other technology, HRI researchers have a 
responsibility to generate knowledge of robots in a way that 
takes that influence into account. From that perspective, it is 
critical to investigate how people are taken into account in HRI 
research. When researchers work with vulnerable populations 
such as children or people with disabilities, they cautiously 
design their studies not just for generating knowledge but for
“caring” for the populations [234]. This implies that HRI
researchers may want to incorporate specificity, heterogeneity, 
and engagement as research goals, in addition to generalizabil- 
ity, replicability, and objectivity, which are currently in focus. 
In this paper, we argue that the HRI community has several 
conscious decisions to make about where we want to head in 
the future, what epistemological goals are the most important 
to strive for, how we incorporate humans, how we engage with 
society, and how we take responsibility for the robots that we 
generate.
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[253] H. R. Lee and S. Šabanovi´ c, “Weiser’s dream in the korean home:
collaborative study of domestic roles, relationships, and ideal technolo- 
gies,” in Proceedings of the 2013 ACM international joint conference 
on Pervasive and ubiquitous computing, 2013, pp. 637–646.

[254] A. Desjardins, R. Wakkary, and W. Odom, “Investigating genres and 
perspectives in hci research on the home,” in Proceedings of the 33rd 
Annual ACM Conference on Human Factors in Computing Systems, 
2015, pp. 3073–3082.

[255] A. Desjardins and R. Wakkary, “Living in a prototype: A reconfigured 
space,” in Proceedings of the 2016 CHI Conference on Human Factors 
in Computing Systems, 2016, pp. 5274–5285.

Session: Understanding and Leveraging Humans HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

492

Authorized licensed use limited to: Michigan State University. Downloaded on October 07,2022 at 20:10:21 UTC from IEEE Xplore.  Restrictions apply. 


